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In a supersonic flow about a conical body with an angle of attack which is less than 
the limiting value, the inviscid flow behind the shock wave (SW) is conical. The laminar 
boundary layer on such a body is described by equations dependent on two similarity variables 
[i]. This formulation of the problem was used to examine a boundary layer on the windward 
side of a triangular plate in [2-5]. A large number of experimental studies [6-8] have 
qualitatively examined flow regimes on the leeward side of a triangular plate with different 
Mach numbers and angles of attack. The heat-transfer coefficients on the leeward side of a 
delta wing with an angle of sweep X = 80~ was measured in [9] at M~ = i0 and different angles 
of attack. Here, all of the variants correspond to a flow regime in which shock waves are 
shed from the edges. An incompressible three-dimensional boundary layer on the leeward side 
of a delta wing was calculated in [i0, ii], where the theoretical region was located between 
the attachment line and the convergence line of the vortex. 

Here, we find the parameters of a laminar boundary layer on the leeward side of a trian- 
gular plate in the case where a shock wave is attached to the leading edges. The solution 
of the similarity equations is constructed from the leading edge by the flight method. The 
solution is constructed to the generatrix, where transverse separation begins. Then the 
similarity equations of the boundary layer are augmented by the second derivatives of the 
sought functions in the circumferential direction, and the problem is solved in the separa- 
tion region bythe establishment method. 

i. ~ will examine supersonic flow about a triangular plate at the angle of attack a. 
The velocity vector of the incoming flow lies in the plane of symmetry. In the case of super 
sonic leading edges, the flows on the upper and lower sides of the plate do not affect each 
other and can be calculated independently. In the neighborhood of the edge, the inviscid 
flow is rotated in the Prandtl--Mayer flow with slip, and the parameters of the gas have 
constant values after the last characteristic. The flow then changes to a conical stream of 
general form. This transition is accompanied by a sharp pressure increase and, possibly, by 
the creation of an internal shock wave [12-14]. 

On the leeward side of the plate, we introduce a cylindrical coordinate system (r, 0, 
z) similar to [3]. Here, r is the distance along the generatrix of the plate; e is the 
angle between the generatrix and the plane of symmetry; z is the normal to the surface of 
the plate. Analogously to the windward side, the boundary-layer equations allow a similar- 

ity solution which is dependent on the variables ~=~0--0,~=z/V~--fl)(~0 is the angle 
of the leading edge). Equations in similarity variables can be solved by the flight method 
along the coordinate ~ in the direction of the transverse component of velocity v. In the 
regime being examined here, as from the windward side, flow on the external boundary of the 
boundary layer on the leeward side is directed from the leading edges to the plane of sym- 
metry. Thus, to use the flight method, it is necessary to assign initial conditions in the 
neighborhood of the leading edge. As m approaches zero, the equations in the similarity 
variables become ordinary differential equations whose solution is used as initial data [3]. 

Similarity boundary-layer equations in the variables ~ and n are solved on the windward 
side over the entire surface of the plate [3]. The solution is similarly constructed on the 
leeward side, from the leading edge to a certain generatrix behind which the transverse 
velocity component changes sign near the wall. Here, the region of flow separation begins 
to form in the transverse direction. The solution of similarity boundary-layer equations 
cannot be continued along the m coordinate when the flight method is used. By virtue of the 
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principle of influence and dependence for a three-dimensional boundary layer [15], we need 
to formulate and solve an independent boundary-value problem for the to coordinate. 

Following [16], we added unordered terms containing second derivatives of the sought 
flow parameters with respect to m to the similarity boundary-layer equations in the trans- 
verse separation region. These terms can be regarded as terms baving artificial viscosity. 
With allowance for the conversion of the variables to dimensionless form and execution of 
the transformations described in [3], the system of equations has the form 

I '  al (3 apv ~ 1" L' t 
" f  o--(. + o \ ~ 9u - - - - ~ - j  - -  -E -s topvN - -  "7 pv = 0, 

?% f ~ = -,,,p.v. ~,,, + ,~ . ) -  ~,,,~ r  (1.1~ 

-Z- J ~ "  + r 1 7 6  u - - ~  - -  p ~ - - 6 ~  ~7-~  = 
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( ' ( ' )F  o or.) , ,  ~ /o~7]  , t &o~- k. + (7-- t) M~t + p = pT. 
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The problem was solved with the following boundary conditions: 

= ~ + :  u = u . ( D ,  v = v + ( D ,  T = r §  

r = Oo: Ou/Or = O, v = O, OT/Oo~ = O, ( 1 . 2 )  

~ = 0 :  u = v = . l = O ,  T =  T~,  

= 1: u = u~(r v "-- v~(co), / '  = r~(co) ,  p = p~(r 

Here, ~ is the logarithmic extension of the normal coordinate q [i, 5]: 
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(L = L(m) is the theoretical thickness of the boundary layer). Also, instead of the normal 

component of velocity w, we introduce the mass velocity J and the function N(~, ~): J = 

p],/ '~ - o . 5 n u + ] / ~ . - E n v + w V 7  +O.opqv ,  N =  0,1/0~ = L(~)e~( l -F  l,'ei)$ I n ( )  -Fl, 'ez).  A l l  o f  t h e  

flow parameters are referred to their values in the incoming flow, while pressure is referred 
to the doubled velocity head p~U~.2 

The profiles of u+(~), v+(~), T+(~) were taken from the solution of the boundary layer 
equations obtained by the flight method with m = 0~-. We took the distributions pe(m) and 
Ve(~) from the calculation of inviscid flow on the external boundary of the boundary layer 
(~ = i). We then used these distributions, the Bernoulli integral, and the entropy on the 

plate surface to calculate the distributions Ue(~) and Te(w): 

u~ (2Y/(V - -  t) (t p~,'p~) vM ~ _ .  2~/~ = - -  - -  ue! , Te = P J 9 ~ ,  P, = (PJS)  ~l, 
(1.3) 

71 = I/y 

(all of the parameters were made dimensionless, as in [13]). 

Strictly speaking, with the introduction of unordered terms containing a second deriva- 

tive into system (i.i), its solution should depend on the local Reynolds number, since the 
coefficient ~ is equal to 1/Re. Calculations performed with • = 45 ~ , M~ = 4, and ~ = 5 ~ 
showed that a change in 6 from i0 -a to 10 -5 gives a difference of no more than 6,% in the 
friction and heat-transfer coefficient, while a change from i0 -s to 10 -6 gives a difference 
of less than 1%. The result calculated for 6 = 0 nearly coincides with the result obtained 
for 5 = 10 -5 . All this indicates that the solution of system (i.i) can be considered nearly 
self-similar and independent of Re at small values of 6. 

2. System (i.i) was solved by the establishment method. Here, we added a nonsteady 
term to each equation of the system. Thus, both equations of motion and the energy equation 
can be written in the form 

OF OF OF 0 f OF ~ 0 [ Of\  
O--F + a b-~ + b -~  H- e b-~ ( c -d~ ) + s b ~  ( g b-~ ) ~- d = O, ( 2 . 1 )  

where F signifies u, v, and T. The specific heat capacity Cp was assumed to be constant, 
while the viscosity coefficient and thermal conductivity were approximated with an exponen- 
tial relation ~ = T ~ k = T ~ System (2.1) was solved numerically by means of an 
implicit two-level difference scheme along the coordinate ~. The derivatives with respect 
to the coordinate m were taken from the previous iteration. The first derivative with 
respect to ~ was determined by means of a second-order angle scheme in relation to the direc- 
tion of transverse flow [17]. All of the coefficients of the equations were taken from the 
previous iteration of the new level. One iteration was performed at each time level. On 
the whole, the scheme employed was characterized by the second order of approximation with 
respect to the steady-state solution. The continuity equation was associated with the same 
degree of accuracy. 
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First we constructed the solution of the "parabolic" problem (without second deriva- 
tives with respect to the coordinate m) from the leading edge m = 0 to the ray m = 0~+, where 
the profile of the transverse component of velocity v+ approached the pre-separation profile. 
Then, for "elliptical" problem (i.i), (1.2), we calculated the initial approximation. For 
this, the profiles u+(~), v+(~), and T+(~) were recalculated for all subsequent rays up to 
the plane of symmetry m = 8o and were normalized with respect to their values on the external 
boundary for the given ray. Then, for the region ~ . <  ~ 0  o , we solved the "elliptical" 
problem (l.1), (1.2) until the steady state was attained. 

Numerical solution of the "elliptical" problem allowed us to determine the profiles 
of velocity and temperature in the boundary layer on the leeward side of the plate. We then 
used these profiles for the surface of the body to calculate the local shear-stress coeffi- 
cients in the longitudinal cf~ and transverse cf~, the absolute value of the vector of the 

2 2 1 / 2  ~ local friction coefficient cf = (cf~ + cf~) , and the local heat-transfer coefficlent St 
(Stanton number). All of these quantities were referred to the velocity head of the incoming 
flow and were determined from formulas presented in [5]. However, these parameters are diffi- 
cult to show graphically, since they tend to infinity with the approach of the leading edges 
of the plate and its tip. Also, they are dependent on the local Re. Thus, for greater con- 
venience in calculating and representing them, we used local similarity parameters dependent 
only on m: 

c,I = % ]/R--C~, % 

where Re r is the local Reynolds number, calculated from the parameters of the incoming flow 

and the distance along the generatrix of the plate r. 

Besides the local friction and heat-transfer coefficients on the leeward side of the 
plate, we obtained the overall similarity friction coefficient CF* = CF/ Re I and the heat 
flux QT* = QT / Rel. These two quantities were referred to the area of the plate [5] (Re I is 
the Reynolds number determined from the length of the central chord l). 

3. Table I shows the results of calculations of the parameters of a laminar boundary 
layer on the lee side of a triangular plate. The calculations were performed for several values of 
• M~, and a. In all of the variants, the ratio of the enthalpy of the wall H w to the total 
enthalpy of the incoming flow H~ was taken equal to 0.i, Pr = 0.7, 6 = i0 -s. 

The conditions on the external boundary of the layer were taken from the table in [13]. 
It should be noted that the parameters of the inviscid flow on the lee side have small oscil- 
lations in the region of high gradients. We smoothed them in the present calculations. 

It is known that flow in the neighborhood of the separation point is very sensitive to 
small perturbations of any character. Thus, the error of the calculations also increases 
sharply in this region. In the solution of the "parabolic" problem, we took the largest 
number of steps along the normal to the plate (40) and with respect to the angular coordinate 
(160). In this case, the error of the calculations of cf* and St* was hundredths of a per- 
cent everywhere except for the pre-separation region, where it reached several percent; As 
the parameter 6 approached zero in the "elliptical" problem, its solution approached the 
solution of the "parabolic" problem (Figs. 1-3). However, the difference was still 
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substantial in the pre-separation region in several of the variants (Figs. 4 and 5). Here, 
it should be kept in mind that different difference schemes were used to solve the "para- 
bolic" and "elliptical" problems. 

Figures 1-3 show distributions of the parameters cf*, c'f2 and St* on the lee surface 
of the plate for X = 45~ a = 5 ~ and M~ = 2, 3, 4, 6 (curves 1-4). The solid lines in all 
of the figures correspond to the "parabolic" problem, while the dashed lines correspond 
to the "elliptical" problem. It is evident that in the region of the leading edge, where 
the inviscid flow is constant, the values of cf* and St* remain nearly constant. The invis- 
cid flow then undergoes restructuring and pressure increases sharply, which causes stagna- 
tion of the boundary layer in the transverse direction. At M= = 6, this stagnation leads to 
a change in the sign of the transverse velocity component v near the plate surface. Thus, 
the solution of the parabolic problem cannot be continued beyond 0/0o = 0.12. The solution 
of the elliptical problem yields transverse separation in this region, which is quite evident 
from Fig. 2. The solutions of both problems are close for this variant outside the separa- 
tion region and for the other three Mach numbers throughout the entire region. The exception 
is the plane of symmetry, in the neighborhood of which there is a substantial difference in 
the parameters cf* and St* obtained in the solution of both problems. This can be attributed 
to the fact that symmetry conditions (1.2) are imposed in the solution of the elliptical 
problem in the plane of symmetry (m = 8o), while there are no boundary conditions here in the 
solution of the parabolic problem. A similar difference is seen for the lee side of a circu- 
lar cone [16]. 

Figure 4 shows the distribution of the parameter cf* on the lee side of the plate with 
M~ = 4, ~ = 5 ~ and X = 45, 55, 60 ~ (curves 1-3). It is evident that the angle of sweep 
depends slightly on the value of cf* in the region of uniform inviscid flow. This difference 
increases in the region where pressure increases, and at X = 55 and 60 ~ the pressure gradient 
leads to transverse separation of the boundary layer. 

Figure 5 shows the distribution of the parameter cf* in relation to the angle 0. Here, 
X = 45~ I~o = 3 and a = 5, I0, 15 ~ (curves 1-3). In the region of uniform inviscid flow, the 
value of cf* decreases by one-third with an increase in a from 5 to 15 ~ . The pressure gradient 

on the leeward side increases in this case, which also helps explain the transverse separa- 
tion at e = I0 and 15 ~ . 
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A change in the angle of sweep and angle of attack affects the similarity value of St* 
as it does cf* Here, no increase in local heat transfer is seen in the region of trans- 
verse separation. 

It should be noted that the transverse separation seen in the present investigation 
means that eddies will appear in the boundary layer on the lee side of the plate. Using 
Narayan's terminology [9], such eddies are called "submerged" eddies, in contrast to the 
eddies which envelop the inviscid flow. In the latter case, flows of high-enthalpy gas from 
the inviscid region move along the line of attachment of the eddy on the surface of the body, 
which causes an increase in local heat flows in this region. 

4. Table i shows the overall values of the similarity friction coefficient CF* and heat 
flux QT* on the lee side of the plate. The top number in each column corresponds to the 
parabolic problem, while the bottom number corresponds to the elliptical problem. The lines 
denote that the parabolic problem cannot be solved to the plane of symmetry for the given 
variant due to transverse separation. It is evident from the Jle that a change in X in 
the investigated range has almost no effect on CF* and QT*. A similar pattern was observed 
on the windward side of a plate in [5]. 

The value of CF* on the lee side decreases almost linearly with an increase in ~, 
although it increased with ~ on the windward side in [5]. Thus, the contribution of the 
lee side to the overall friction coefficient of the plate decreases from 47 to 34% with an 
increase in ~i~ from 2 to 6 at X = 45~ and a = 5 ~ . 

The dependence of the parameter CF* on a on the lee side decreases monotonically, while 
the reverse is seen on the windward side [5]. This and the previous phenomenon can appar- 
ently be explained by the fact that an increase in ~ or ~ is accompanied by a decrease in 
the density of the gas on the lee side and an increase in gas density on the windward side. 
The contribution of the lee side to the overall friction coefficient of the plate decreases 
from 43 to 31% with an increase in ~ from 5 to 15 ~ at X = 45 ~ and M= = 3. 
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SUPERSONIC FL~ OVER DELTA WINGS AND 

ELEMENTS OF STAR-SHAPED BODIES AT 

ANGLES OF ATTACK AND ROLL 

O. N. Ivanov and A. I. Shvets UDC 533.6.011.55+629.782.015.3 

Since the sixties there has been widespread investigation of the flow over triangular 
delta wings (e.g., [1-3]). It has been shown theoretically and experimentally that at super- 
sonic speed a delta wing has a larger L/D than an equivalent planar triangular wing. In 
addition to studies of flow over lifting surfaces the aerodynamic characteristics of star 
shapes have been investigated [4-6]. These shapes, whose elements can be considered as 
delta wings, have considerably less drag at supersonic speeds than equivalent axisymmetric 
bodies. 

In flight conditions one can achieve a flow regime where the plane of the angle of 
attack does not coincide with the plane of symmetry of a star-shaped body. Asymmetrical 
flow over delta wings forms in some cases at angles of attack and roll and also where there 
is asymmetry of the original wing shape. There are very few papers dealing with asymmetric 
flow over delta wings. Possible asymmetric shock wave patterns on delta wings have been 
studied [7]; in investigations of slip flow over delta wings of vertex angle A > 150 ~ cal- 
culations of the pressure distribution and the aerodynamic characteristics have been com- 
bined with direct measurements of pressure, force and momentum at M = 7.8-15.5 [8]. 

This paper gives results of experiments on supersonic flow over delta wings at angles 
of attack and roll. In contrast with [8] we studied the flow over delta wings over a wide 
range of vertex angle (A is the angle between the wetted surfaces of the delta wing) with 
both a curved shock wave, and with a shock system positioned between the wings, correspon- 
ding to Mach and regular interaction. At large vertex angles (A = 150-180 ~ ) the flow sys- 
tems studied show flow asymmetry of a vehicle with delta wings, and for values of vertex 
angle (A < 90) they show flow over an element of a star-shaped body. 

i. Experimental Technique and Model Description. Tests were made in a short-duration 
wind tunnel of the Institute of Mechanics, MGU. The aerodynamic facility has a closed 
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